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Wigner surmise for high-order level spacing distributions of chaotic systems
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We suggest an extension of the Wigner surmise for the nearest-neighbor-spacing distribution of energy
levels of chaotic systems to include tih-order spacing distributions. The main assumption is that the
conditional probability density of occurrence of a level at a given distance from a fixed level, provided that this
distance containg levels, is expressed in terms of the+1)th power of corresponding probability for a
distance containing no levels. At large spacings, nitie-order level distributions are assumed to have a
Gaussian shape as in the cases covered by the Wigner surmise. The expressions obtained are in good agree-
ment with the results of numerical calculation by means of the random matrix theory for the three universal
classes of symmetryS1063-651X99)05210-1

PACS numbes): 05.45-a

[. INTRODUCTION tems belonging to the above-mentioned three classes of sym-
metry. The termpg(n,s) ds represents the probability that
The random matrix theoryl —3] presents a natural frame- an interval of lengths which starts at an arbitrarily chosen
work for describing fluctuation properties of spectra of quandevel contains exactlyr levels and that the nexin( 1)th
tum systems, whose classical dynamics is chaotic. Théevel is in the interval[s,s+ds]. In this notation, the
theory considers three types of random matrix ensemblesiearest-neighbor-spacing distributi®y(s) is expressed as
namely, the Gaussian orthogonal ensemb@®OE), the  pg(0,s). Exact expressions for these functions as well as
Gaussian unitary ensemb{&UE), and the Gaussian sym-
plectic ensembléGSE). The GOE is appropriate for systems T r
with time reversal symmetry and integral spin, the GUE ap- i GUE 1
. . h 1.0 ]
plies to systems without time reversal symmetry, and the
GSE is applicable to systems with time reversal symmetry
and half-integral spin. The symmetry properties define the
degree of level repulsion in the energy spectrum of the en-
semble [4]. The nearest-neighbor-spacing distribution
Py(s)xs? for s—0, where=1, 2, and 4 for the GOE,
GUE, and GSE, respectively. The Gaussian distribution of
the Hamiltonian matrix elements suggests a Gaussian falloff
of P4(s) at larges. A reasonable representation fe(s) is
given by the so-called Wigner surmise

E, (0,5 )

+

Pﬁ(s)zABsﬁe*BﬁSZ, ) .o N ]
where the parametess; and B, are obtained from the nor- ) ]
malization condition and the requirement that the mean spac-
ing is unity. They are specifically given b, = /2, B,
=ml4 (GOB), A,=32/7%, B,=4/m (GUE), and A,
=262 144/7293, B,=64/97 (GSB, respectively. The
Wigner surmise is an exact result only for ensembles>o22 i
matrices. It nevertheless provides an excellent approximation ./ \
for the exact numerical calculations obtained for the higher- w4 . \
order matrices, and has indeed been useful in the analysis of L Y
experimental and numerical-experimental results involving ! z
chaotic systems. It has also provided a basis for numerous S
attempts to evaluate the nearest-neighbor-spacing distribu- g, 1. Nearest-neighbor-spacing distributips(0.s) and gap
tions of levels for a system with mixed ordered-chaotic claswistribution E,(0,s) for levels of a GUE. The solid curves are cal-
sical dynamics, e.g[5-12]. culated using the Wigner surmisg), the dotted curves are for the

In this paper, we generalize the Wigner surmiseHg(s) Brody-like distribution(4), and the dots are the numerical values
to thenth-order spacing distributiops(n,s) for chaotic sys-  reported in Mehta’s bookl].
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FIG. 2. Probabilities€,(n,s) of havingn lev-
els of a GOE in an interval The solid curves are
obtained by applying the proposed generalization
of the Wigner surmise. The dots are the numeri-
cal values reported in Mehta’s bodk].

E\(“)S )

tables for the related distributions are available, e.g[lin  and no levels in the intervaE,E+s). The requirement that
High-order spacing distributions have recently been considP4(s) behave at smalé according to a power law implies
ered for quasi-integrable billiard43], as well as for systems that

in transition between regularity and chddg]. In Ref.[14],

the nth-order spacing distributions are obtained by applying rp(s)=s? for s—0. ©)

a statistical approach similar to that used in deriving the
Brody distribution[15] that assumes a fractional power for i . X
the level repulsion. Section Il reviews these statistical argu—relat'On gnd cannot 5|.mply be used to define the dependence
ments, showing that they are not successful for repulsioﬁ)f r(s) in the whole interval of @(S<.°o' Only '2 the case
powersB>1 and can reproduce only the small-spacing sec9f the GOE wher_;6’=1 does_ the ch0|_ceﬁ(s)_ocs work to

tion of the level distributions for the GUE, for example. We re[?roduce the ng.ner surmise for th's paft"’“'af case. Bro-
apply the statistical approach only to evaluate the small dY'S formula for mixed systempl5] is obtained by setting

behavior ofpg(n,s). We assume that the probability of oc- rﬁ(fs)ocsﬁ for _all values ofs and, without a theoret_ical foun-
currence ofn+1 levels within a distance from a given dation, aIIowmg_B to vary bef[ween 0 a_nd .1 o interpolate
level is related to the probability of occurrence of a singlebetvveen the Poisson and Wigner distributions. The success

level raised to the power+ 1. We then obtain a Wigner-like of Brody’s formula in the analysis of empirical spacing dis-

surmise forpg(n,s) by assuming a Gaussian falloff at large ;[rlbultlon ISI pot fsufﬂtqent to Ju§t'|];y thﬁ pov;/rtler Izwtf%r ;[.he
s. The summary and conclusions of this work are given in evel repuision tunction, especially when other distributions
Sec. Ill. that have stronger theoretical foundations can fit the data

equally well if not bettef12].
The choice ofrﬁ(s)ocsﬁ will clearly produce wrong re-
IIl. HIGH-ORDER LEVEL SPACING DISTRIBUTION sults for the spacing distributions of the GUE and GSE,

Wigner[16] suggested a simple probabilistic approach towhere,fg’=2 and 4, respectively. We demonstrate this on the

calculating the nearest-neighbor-spacing distribution. He op€Xa@mple of GUE. Assuming thag(s) =cs’, wherec is a
tains constant, and substituting into E@), we obtain

1 r 1)
- 7gllls
Figure 1 shows a comparison between the prediction of the

wherer 4(s) is the level-repulsion function defined so that Brody-like distribution(4), shown by the dashed line, the

rg(s)ds is the conditional probability that, given a level at Wigner surmise for the GUE, shown by the solid line, and
energyE, there is one level in the intervdk at a distances  the exact numerical results, taken from Mehta’s bpjkand

We stress here that the previous relation is an asymptotic

3

P,(s)=cs’ exp{—lcs3 (4)

3

: )

Pﬁ(s):rﬂ(s)exﬁ{ - fwl’ﬁ(x)dx

S

GUE ]

2 3 . ’ FIG. 3. Probabilitie€,(n,s) of havingn lev-

els of a GUE in an intervad. The solid curves are
obtained by applying the proposed generalization
of the Wigner surmise. The dots are the numeri-
cal values reported in Mehta’s bok].
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shown in the figures as dots. The figure also shows the samwherec,, is a constant. Solving this equation by induction,
comparison for the gap distribution function defined by we obtain

o o pg(n,s)xs“en  for s—0, 9
Eﬁ(O,s)=J dyJ’ Pg(x)dx. (5)
s y where
It is clear from the figure that, while the predictions of the (n+1)(n+2)
Wigner surmise practically coincide with the exact results, agn=n+ - 3 P (10

the agreement of the latter distributions with the Brody-like

formulas is reasonable only for spacings much less thagquation(9) agrees with the characteristic form of the high-
unity. We expect the disagreement to be even stronger in thgrder level repulsion effect for small spacings that has al-
case of the GSE where the exponential function in Brodyready been put forward by Porter using a completely differ-

like distribution has an argument proportionalsfo ent argumenf17]. This can be regarded as a confirmation of
Engel, Main, and Wanng@.4] applied Wigner's approach the old result and the proposed line of ans@tz

to obtain the following expression for theth-order spacing Finally, assuming that a Gaussian law governs the falloff

distribution: of the functionpy(n,s) at larges, we obtain the following

generalization of the Wigner surmise:
Pp(n,s)=rg(n,s)
pa(n,s)=Ag ,s“snexp(— B ns?), (11)

S
Xexp{—forﬁ(n,s)ds} where the constantd;, and Bg , are obtained from the
conditions thatf yps(n,s)ds=1 and[;sPs(n,s)ds=n+1.
dx, (6) These conditions yield

X fo pB(n—l,X)exp{ fo rg(n,y)dy

A :ZB(aﬁ‘nJrl)/Z/ r(“ﬁ,n+l)
wherer 4(n,s)ds is the conditional probability that a new A.n B.n 2
[(n+1)th] level occurs in an intervalsat a distance from
an arbitrary chosen level, provided that this distance containdnd
exactly n levels. In the following, we apply this result to 2
deduce the small-spacing behavior for tith-order spacing (n+1)1“( apnt 1) H _
distribution pg(n,s) and derive the full distribution by as- 2
suming a Gaussian falloff at large spacing. (12)

Our main assumption is that the occurrence of consecu- . . .

tive levels in a chaFc))tic system is a random process. This The probabilityE (n,s) that the intervab contamsp lev-
allows us to express the conditional probability(n,s) of €ls can be expressed by means of &as a double integral

occurrence of ther(+1)th level at a distance in terms of ofa combin.ation of_the fun_ctior}sﬁ(n,s), which is reduced,
the conditional probabilityr 5(s) of occurrence of a single after changing the integration order, to the form

level raised to the power+ 1, at least for small values af o

Therefore, taking Eq(3) into account, we propose the fol- Eﬁ(n,s)=f (Xx=8)[pg(n,x)—2pg(N—1x)

lowing ansatz: s

+ - .
rg(n,s)xs"* DA for s—0. 7) Ps(n—2x)]dx (13
This equation is valid fon=2 but can also be applied for
the lower values ofi if one definespg(j,s)=0 for j=—1
and —2.
ps(n,s)=c S(n+1)ﬂJSp (n—1x)dx, ®) We have applied Eqg11) and(13) to calculate the dis-
p " o tributions E4(n,s) with values ofn ranging from 0 to 7 for

Accordingly, we rewrite Eq(6) in the domain of smals as
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the GOE, GUE, and GSE. The results of calculation are comtribution. We use a statistical approach that has been success-
pared with the exact values reported by Melithin Figs. 2,  ful in calculating the lowest-order distributions for systems
3, and 4, respectively. As follows from these figures, thein transition between the Poisson and GOE statistics. We

agreement is perfect. assume that theth-order level repulsion function is propor-
tional to the @+ 1)th power of the zero-order function, at
IIl. SUMMARY AND CONCLUSION least in the small-spacing domain. The falloff of the distri-

bution at large spacing is assumed to follow a Gaussian law.
The Wigner surmise presents a simple and accurate refWe then obtain an expression for théh-order spacing dis-
resentation for the nearest-neighbor-spacing distribution ofribution which is reduced to the Wigner surmise by setting
levels for chaotic systems. The present work proposes a gen=0. This expression is found to be in excellent agreement
eralization of the surmise to describe high-order spacing diswith the exact results of the random matrix theory.
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