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Wigner surmise for high-order level spacing distributions of chaotic systems
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We suggest an extension of the Wigner surmise for the nearest-neighbor-spacing distribution of energy
levels of chaotic systems to include thenth-order spacing distributions. The main assumption is that the
conditional probability density of occurrence of a level at a given distance from a fixed level, provided that this
distance containsn levels, is expressed in terms of the (n11)th power of corresponding probability for a
distance containing no levels. At large spacings, thenth-order level distributions are assumed to have a
Gaussian shape as in the cases covered by the Wigner surmise. The expressions obtained are in good agree-
ment with the results of numerical calculation by means of the random matrix theory for the three universal
classes of symmetry.@S1063-651X~99!05210-1#

PACS number~s!: 05.45.2a
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I. INTRODUCTION

The random matrix theory@1–3# presents a natural frame
work for describing fluctuation properties of spectra of qua
tum systems, whose classical dynamics is chaotic.
theory considers three types of random matrix ensemb
namely, the Gaussian orthogonal ensemble~GOE!, the
Gaussian unitary ensemble~GUE!, and the Gaussian sym
plectic ensemble~GSE!. The GOE is appropriate for system
with time reversal symmetry and integral spin, the GUE a
plies to systems without time reversal symmetry, and
GSE is applicable to systems with time reversal symme
and half-integral spin. The symmetry properties define
degree of level repulsion in the energy spectrum of the
semble @4#. The nearest-neighbor-spacing distributi
Pb(s)}sb for s→0, whereb51, 2, and 4 for the GOE
GUE, and GSE, respectively. The Gaussian distribution
the Hamiltonian matrix elements suggests a Gaussian fa
of Pb(s) at larges. A reasonable representation forP(s) is
given by the so-called Wigner surmise

Pb~s!5Absbe2Bbs2
, ~1!

where the parametersAb andBb are obtained from the nor
malization condition and the requirement that the mean sp
ing is unity. They are specifically given byA15p/2, B1
5p/4 ~GOE!, A2532/p2, B254/p ~GUE!, and A4
5262 144/729p3, B4564/9p ~GSE!, respectively. The
Wigner surmise is an exact result only for ensembles of 232
matrices. It nevertheless provides an excellent approxima
for the exact numerical calculations obtained for the high
order matrices, and has indeed been useful in the analys
experimental and numerical-experimental results involv
chaotic systems. It has also provided a basis for nume
attempts to evaluate the nearest-neighbor-spacing dist
tions of levels for a system with mixed ordered-chaotic cl
sical dynamics, e.g.,@5–12#.

In this paper, we generalize the Wigner surmise forPb(s)
to thenth-order spacing distributionpb(n,s) for chaotic sys-
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tems belonging to the above-mentioned three classes of s
metry. The termpb(n,s) ds represents the probability tha
an interval of lengths which starts at an arbitrarily chose
level contains exactlyn levels and that the next (n11)th
level is in the interval @s,s1ds#. In this notation, the
nearest-neighbor-spacing distributionPb(s) is expressed as
pb(0,s). Exact expressions for these functions as well

FIG. 1. Nearest-neighbor-spacing distributionp2(0,s) and gap
distributionE2(0,s) for levels of a GUE. The solid curves are ca
culated using the Wigner surmise~1!, the dotted curves are for th
Brody-like distribution~4!, and the dots are the numerical valu
reported in Mehta’s book@1#.
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FIG. 2. ProbabilitiesE1(n,s) of havingn lev-
els of a GOE in an intervals. The solid curves are
obtained by applying the proposed generalizati
of the Wigner surmise. The dots are the nume
cal values reported in Mehta’s book@1#.
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tables for the related distributions are available, e.g., in@1#.
High-order spacing distributions have recently been con
ered for quasi-integrable billiards@13#, as well as for systems
in transition between regularity and chaos@14#. In Ref. @14#,
the nth-order spacing distributions are obtained by apply
a statistical approach similar to that used in deriving
Brody distribution@15# that assumes a fractional power f
the level repulsion. Section II reviews these statistical ar
ments, showing that they are not successful for repuls
powersb.1 and can reproduce only the small-spacing s
tion of the level distributions for the GUE, for example. W
apply the statistical approach only to evaluate the smas
behavior ofpb(n,s). We assume that the probability of oc
currence ofn11 levels within a distances from a given
level is related to the probability of occurrence of a sing
level raised to the powern11. We then obtain a Wigner-like
surmise forpb(n,s) by assuming a Gaussian falloff at larg
s. The summary and conclusions of this work are given
Sec. III.

II. HIGH-ORDER LEVEL SPACING DISTRIBUTION

Wigner @16# suggested a simple probabilistic approach
calculating the nearest-neighbor-spacing distribution. He
tains

Pb~s!5r b~s!expF2E
s

`

r b~x!dxG , ~2!

where r b(s) is the level-repulsion function defined so th
r b(s)ds is the conditional probability that, given a level
energyE, there is one level in the intervalds at a distances
-

g
e

-
n
-

n

b-

and no levels in the interval (E,E1s). The requirement tha
Pb(s) behave at smalls according to a power law implies
that

r b~s!}sb for s→0. ~3!

We stress here that the previous relation is an asympt
relation and cannot simply be used to define the depende
of r b(s) in the whole interval of 0,s,`. Only in the case
of the GOE whenb51 does the choicer b(s)}sb work to
reproduce the Wigner surmise for this particular case. B
dy’s formula for mixed systems@15# is obtained by setting
r b(s)}sb for all values ofs and, without a theoretical foun
dation, allowingb to vary between 0 and 1 to interpola
between the Poisson and Wigner distributions. The succ
of Brody’s formula in the analysis of empirical spacing di
tribution is not sufficient to justify the power law for th
level repulsion function, especially when other distributio
that have stronger theoretical foundations can fit the d
equally well if not better@12#.

The choice ofr b(s)}sb will clearly produce wrong re-
sults for the spacing distributions of the GUE and GS
whereb52 and 4, respectively. We demonstrate this on
example of GUE. Assuming thatr 2(s)5cs2, wherec is a
constant, and substituting into Eq.~2!, we obtain

P2~s!5cs2 expF2
1

3
cs3G , c5

1

9 FGS 1

3D G3

. ~4!

Figure 1 shows a comparison between the prediction of
Brody-like distribution ~4!, shown by the dashed line, th
Wigner surmise for the GUE, shown by the solid line, a
the exact numerical results, taken from Mehta’s book@1# and
on
ri-
FIG. 3. ProbabilitiesE2(n,s) of havingn lev-
els of a GUE in an intervals. The solid curves are
obtained by applying the proposed generalizati
of the Wigner surmise. The dots are the nume
cal values reported in Mehta’s book@1#.
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FIG. 4. ProbabilitiesE4(n,s) of havingn lev-
els of a GSE in an intervals. The solid curves are
obtained by applying the proposed generalizati
of the Wigner surmise. The dots are the nume
cal values reported in Mehta’s book@1#.
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shown in the figures as dots. The figure also shows the s
comparison for the gap distribution function defined by

Eb~0,s!5E
s

`

dyE
y

`

Pb~x!dx. ~5!

It is clear from the figure that, while the predictions of th
Wigner surmise practically coincide with the exact resu
the agreement of the latter distributions with the Brody-li
formulas is reasonable only for spacings much less t
unity. We expect the disagreement to be even stronger in
case of the GSE where the exponential function in Bro
like distribution has an argument proportional tos5.

Engel, Main, and Wanner@14# applied Wigner’s approach
to obtain the following expression for thenth-order spacing
distribution:

pb~n,s!5r b~n,s!

3expF2E
0

s

r b~n,s!dsG
3E

0

s

pb~n21,x!expF E
0

x

r b~n,y!dyGdx, ~6!

where r b(n,s)ds is the conditional probability that a new
@(n11)th# level occurs in an intervaldsat a distances from
an arbitrary chosen level, provided that this distance cont
exactly n levels. In the following, we apply this result t
deduce the small-spacing behavior for thenth-order spacing
distribution pb(n,s) and derive the full distribution by as
suming a Gaussian falloff at large spacing.

Our main assumption is that the occurrence of conse
tive levels in a chaotic system is a random process. T
allows us to express the conditional probabilityr b(n,s) of
occurrence of the (n11)th level at a distances in terms of
the conditional probabilityr b(s) of occurrence of a single
level raised to the powern11, at least for small values ofs.
Therefore, taking Eq.~3! into account, we propose the fo
lowing ansatz:

r b~n,s!}s~n11!b for s→0. ~7!

Accordingly, we rewrite Eq.~6! in the domain of smalls as

pb~n,s!5cns~n11!bE
0

s

pb~n21,x!dx, ~8!
e
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wherecn is a constant. Solving this equation by inductio
we obtain

pb~n,s!}sab,n for s→0, ~9!

where

ab,n5n1
~n11!~n12!

2
b. ~10!

Equation~9! agrees with the characteristic form of the hig
order level repulsion effect for small spacings that has
ready been put forward by Porter using a completely diff
ent argument@17#. This can be regarded as a confirmation
the old result and the proposed line of ansatz~7!.

Finally, assuming that a Gaussian law governs the fal
of the functionpb(n,s) at larges, we obtain the following
generalization of the Wigner surmise:

pb~n,s!5Ab,nsab,n exp~2Bb,ns2!, ~11!

where the constantsAb,n and Bb,n are obtained from the
conditions that*0

`pb(n,s)ds51 and*0
`sPb(n,s)ds5n11.

These conditions yield

Ab,n52Bb,n
~ab,n11!/2Y GS ab,n11

2 D
and

Bb,n5FGS ab,n

2
11D Y H ~n11!GS ab,n11

2 D J G2

.

~12!

The probabilityEb(n,s) that the intervals containsn lev-
els can be expressed by means of Eq.~5! as a double integra
of a combination of the functionspb(n,s), which is reduced,
after changing the integration order, to the form

Eb~n,s!5E
s

`

~x2s!@pb~n,x!22pb~n21,x!

1pb~n22,x!#dx. ~13!

This equation is valid forn>2 but can also be applied fo
the lower values ofn if one definespb( j ,s)50 for j 521
and22.

We have applied Eqs.~11! and ~13! to calculate the dis-
tributionsEb(n,s) with values ofn ranging from 0 to 7 for
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the GOE, GUE, and GSE. The results of calculation are co
pared with the exact values reported by Mehta@1# in Figs. 2,
3, and 4, respectively. As follows from these figures,
agreement is perfect.

III. SUMMARY AND CONCLUSION

The Wigner surmise presents a simple and accurate
resentation for the nearest-neighbor-spacing distribution
levels for chaotic systems. The present work proposes a
eralization of the surmise to describe high-order spacing
s

-

e

p-
of
n-

s-

tribution. We use a statistical approach that has been succ
ful in calculating the lowest-order distributions for system
in transition between the Poisson and GOE statistics.
assume that thenth-order level repulsion function is propor
tional to the (n11)th power of the zero-order function, a
least in the small-spacing domain. The falloff of the dist
bution at large spacing is assumed to follow a Gaussian l
We then obtain an expression for thenth-order spacing dis-
tribution which is reduced to the Wigner surmise by setti
n50. This expression is found to be in excellent agreem
with the exact results of the random matrix theory.
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